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1. Introduction

In describing a picture, one often needs to specify geo-

metric relations among the regions of which the picture is

composed. For a review of such relations and their measure-

ment in digital pictures, see [1].

Adjacency is an important relation between regions. In

a digital picture, sets S and T are adjacent if scoe border pixel of

S is a neighbor of some border pixalof T; in the Euclidean plane,

regions S and T are adjacent if their borders intersect.

Note that this relation is not quantitative; S and T are not

considered adjacent even if they are very close to one another,

and it also makes no difference whether they are adjacent at

one point or at many points. In Section 2 we propose a quan-

titative definition of adjacency which does take these factors

into account.

Another important region relation is surroundedness. We

assume that all pictures are of finite size; the region of

the plane outside a picture is called the background. We

say that S surrounds T if any path from T to the background

must intersect S. This definition too is nonquantitative.

In Section 3 we propose two ways of defining the deqree to

which S surrounds T.



2. Quantitative adjacency

In Section 2.1 we define quantitative adjacency for

regions in the Euclidean plane. In Section 2.2 we general-

ize this definition to fuzzy subsets of the plane, and in

Section 2.3 we discuss quantitative adjacency of subsets of

a digital picture.

2.1. Euclidean regions

Let C 0 be a rectifiable simple closed curve in the plane,

and let C1 1**... PCn be rectifiable simple closed curves not

crossing one another and contained in the interior (20of C 0 *

According to the orientation of C0, the closed set C 0 UC 0 will

be either a bounded set, or the infinite plane except for a

bounded set (infinite case). For C1, ~C n we assume that C1,

C n are bounded sets. Then (C 0 U60 )-(6 1U... UC n) is called

a region; C 0 is called its outer border, and C1 ,.... ,C are

called its hole borders. Note that in the infinite case,

there is no unique distinction between the outer border and

the hole borders because the outer border may be considered

to be a hole border itself. The perimeter of the region is the

n
sum Z C of the lengths of its borders.

i=0

Intuitively, two regions S and T are (somewhat) adjacent

if some border of S (nearly) touches some border of T; the

degree of adjacency depends on how nearly they touch and

along how much of their lengths they do so. The borders

nearly touch if they are close to one another, as illustrated

in Figure la-b; note that S and T1 are allowed to overlap.



Note, however, that not all cases in which borders are close

to each other imply near-adjacency, as shown in Figure 1c.

The difference is that in Figures la-b, the shortest paths

between the close borders lie outside both regions or inside

both of them, while in Figure lc these paths lie inside one

region and outside the other. It also seems plausible that

only line-of sight paths should be counted in defining

adjacancy; in Figure 2a, the left-hand.edge of T should con-

tribute to its degree of adjacency to S, but its other edges

should not, and similarly in Figure 2b, the parts of the bor-

der of the concavity in T from which S is not visible should

not contribute. Finally, note that quantitative adjacency

is not symmetric; in Figure 3(a-b), S is highly adjacent to

T, since much (or all) of its border nearly coincides with

the border of T, but T is not as highly adjacent to S, since

only a small fraction of its border coincides with that of S.

Based on these considerations, we define the degree of

adjacency of S to T as follows: Let P,Q be any border points

of S and T, respectively. If P Q, we say that the line seg-

ment PQ is admissible ("with respect to (S,T)"understood) if

its interior lies entirely outside both S and T or entirely

inside both of them. If P=Q, we call PQ admissible if the

(signed) normals to the borders of S and T at P do not point

in the same direction. Let dp be the length of the shortest

admissible line segment PQ having P as an endpoint; if no

such segment exists, let dp= 0. Then we define a(S,T)=fdl_1 d+-

where the integration is over the border S of S. For example,



if S and T are two squares of size axa with distance b between

them, then a(S,T)=a(T,S)= a Or, if S is a square of size

axa located at the center of a square T of size bxb, defining
-4a

an infinite region T, then a(S,T)= l+b-a/2 so that a(S,T) 

4b for a - b.

According to this definition, a border point P of S con-

tributes maximally to a(S,T) if it also lies on the border

of T (and the conditions for the case P=Q are met), since in

this case dp=0 and d-=1; and it does not contribute at all
dP +

if no admissible segment PQ exists (e.g., if the border of T

is not visible from P), since in this case dp= and d =0.d1 +

Since dp0, in any case we have 1p El; thus a(ST)-Jl dP=

p(S), the perimeter of S. If desired, one can normalize

a(S,T) by dividing it by p(S); it then lies between 0 (not

at all adjacent) and 1 (maximally adjacent). For example,

a hole in a region is maximally adjacent to that region; see

Proposition 2.2. We could have used a different function
1

f(dp), in place of dp+l' in defining a(S,T); the essential

requirements are that f be a monotonically decreasing func-

tion of dp, and that f(0)=l, f(-)=0.

Proposition 2.1. For regions S and T, a(S,T)=0 if and only

if ScT.

Proof: If S<_T holds, there are no admissible

segments PQ. Note that where the borders touch, the signed

normals of S and T point in the same direction. Conversely,



if ST, then by the definition of a region, there must

exist a border arc of S at every point of which there is

an admissible segment, so that a(S,T) 0. JI

Proposition 2.2. For regions S and T, a(S,T)=p(S) if and

only if either S is bounded, lies inside a hole in T, and

its border is identical to the border of that hole; or S

is unbounded, T lies inside a hole in S, and the border of

S is identical to the outer border of T.

Proof: If these conditions hold, we have dp=0 at every

border point of S. Conversely, under no other circumstances

can the entire border of S coincide with a part of the border

of T. Note that a region cannot consist of several isolated

parts; thus it must be contained in one hole only. fl

The definition of a(S,T) can easily be extended to vari-

ous types of sets other than regions. For example, for a

single point P we can define a(P,T) as 0 if PET , and 1
d(P,T)+l

if Pft', where d(P,T) is the distance from P to T.* (It follows

From this definition that a (P,T)=1 when P is on the border of

T.) Conversely, for a single point Q we can define a(SQ)

using our original definition for sets S and {Q}; note that

here too there are no admissible segments if QES, but that

otherwise a(S,Q) is obtained by integration over the part

of the border of S visible from Q. Similarly, we can define

*This definition is not exactly analogous to the one for regions;
a single point has zero border length, so that integrating over
it should always give zero. The analogy would be better if, in
the region definition, we normalized a(S,T) by dividing ;o '(S).



a(S,T) if S or T is an arc; the details are left to the reader.

If a(Si,T ) are all defined for Sl,...,S and T ,T , we

can also define a( U Sit U T.); again, the details are omitted.
i=l 1 j=l j

Proposition 2.3. If T'cT and SnT=O, then a(S,T')2a(S,T).

Proof: Let PQ be any admissible segment in the definition

of a(S,T'). Let R be the first point in which PQmeets T;

then PR or a shorter line segment is admissible in the defi-

nition of a(S,T) . (Note that R#P since SnT=0.) If dp,d are

the lengths of the shortest admissible segments in the defi-

nitions of a(S,T) and a(S,T'), respectively, we thus have

dp-dp. (Note that for some P's there may be admissible seg-

ments with respect to T but not with respect to T'.) Thus
1 1

f1d P j- dP.
as dP' as dp+l

Proposition 2.4. If P,P'fT and d(P',T) d(P,T), then a(P',T)

a(P,T), but it is not necessarily true that a(T,P') a(T,P).

1 - '.1
Proof: Evidently a(P',T) 1 a(P,T) .

d(P',T)+l dPT)+fl (,)

On the other hand, let P, P', and T be as shown in Figure 4;

then evidently (for P sufficiently close to P') the contribu-

tions of side b to a(T,P) and a(T,P') are approximately equal,

but sides a and c do not contribute to a(T,P'), so that its

total contribution is smaller (see example 2.2).

Proposition 2.5. For PfT, a(P,T) is a continuous function of

the position of P, but a(T,P) is not.

Proof: See the proof of Proposition 2.4 and the example

given there.



2.2. Fuzzy subsets

Our definition of a(ST) can be generalized to the case

where S and T (call them i and v) are bounded fuzzy subsets -

that is, functions defined on the plane, with values in [0,1],

and equal to zero outside a bounded region B. The desirability

of defining geometric concepts in the fuzzy case, so that they

can be measured without having to first crisply segment a pic-

ture, is discussed in [2]

We assume in what follows that (and v' .-. "piecewise

constant" in the following sense: We part on B into a

finite number of regions whose interiors a isjoint, and

where the border of each region is contained in the union of

the borders of the other regions. Let 8 be the union of all

borders of these regions. In the interior of each region,

P has constant value; at each point of a border, it has

one of the neighboring interior values. [Another case

of interest is that in which i and v are "smooth," i.e.,

everywhere differentiable; note that we can approximate a

piecewise constant o by a smooth v which is constant except

near the borders, where it changes rapidly from one constant

value to another. "Smooth" versions of the definitions in

this section could be given, using derivatives in place of

differences.]

If P$Q, we call the segment PQ admissible ("with respect

to (1,,,, )" understood) if:

II

Si



a) P is on a border of 3, and Q on a boe'Ir czf E.

We assume that orl" t-u of the constant regions

-f P) meet at P(Q). (More than two regions

met only at a finite number of points, and these

can be ignored in defining degree of adjacency.)

b) Let R$P be a point of PQ such that ,. changes

value at R as we move from P to Q (there can only

be finitely many such R's), and let 1R be this

change in valuc. Let the values of at the two

regions that meet at P be a and b, where b is the

value on PQ near P, and let !pi=a-b. We assume 4

that Ap and all the L's have the same sign, and

that P p>I'R for all R.

c) Let 7R and VQ be defined analogously to 'R and p

in (b), with i replacing I and the roles of P and

Q reversed. We assume that 'Q and all the 7 R s have

the same sign; that this is the same sign as in (b) ;

and that for all R.

Conditions (b-c) mean that the changes in as we move from

P to Q are all in the same direction, and the change "at P" is

the largest of them; and analogously for the changes in as

we move from Q to P. Intuitively, this means that the border

points P,Q of a are facinq toward or away from each other

(since the changes have the same signs in both cases), and

tnait no "stronger" border points (at which lar,,er changes

-- ocr, lie Li-tween them, so that the,:, are within "line of si;ht.'



It is easily seen that if 4 and v are crisp, these conditions

reduce to the definition of admissibility given in Section

2.1 for P Q.

When P=Q, we call PQ admissible if P is a border point

of 3, and the changes in p and v at P (in a fixed direction

from one region of the partition of B to the other touching

it at P) have opposite sign. In this case, let Ap and 7Q

be the changes in the values of , and v at P, defined as

in the preceding paragraph, where A '7 Q0 is assumed.

For each P, let g(P) sup Ap- , where d(P,Q)
PQ admissible d(P,Q)+l

is the distance from P to Q. Note that the numerator is always

postiive, since the changes in u and v at P and Q have the same

sign; and that lApi and IVQ each _-1, so that the numerator is

in the interval (0,11. Evidently, in the crisp case the numera-

tor must be 1, and the sup is achieved when the denominator is
1

as small as possible, so that g(P) is the same as dp+l of

Section 2.1. It is understood that g(P)=0 if no admissible PQ

exists.

Note that our definition of g(P) involves a tradeoff between

the border strengths (=sizes of changes) at P and Q and the dis-

tance d(P,Q); the sup may arise from weak changes that are close

tog;ether (or even coincide), or from stronger changes that are

farther apart. The nature of the tradeoff can be manipulated

b, usinq some other monotonic function of d(P,Q) in place of
1

J~P,Q) l ; compare the remark about f(P) in Section 2.1.

P " . . . . . . . . . . . . . . . .. I I I • I | l



Finally, we define a(,v>)= Jg(P)dP, where the integra-
B

tion is along all borders B of the partition of B. We

leave it to the incerested reader to consider extensions

of this definition (e.g., to define a(P,v) and a(p,Q),

where P and Q are points), and to investigate the possi-

bility of fuzzy generalizations of the Propositions in

Section 2.1. We prove here only

Proposition 2.6. a(p,v)$-p(p), the (fuzzy) perimeter of i.

Proof: We recall [3] that P(W) is just the sum of the lengths

of the border arcs of B atwhich pairs of regions of w meet,

each multiplied by the absolute difference in value between

that pair of regions. Now this difference, at a given border

point P, is just Ap. Thus

( fIApIdP f g(P)dP

for any v, since in any case g(P) = d Q for a certain
d PQ)+l

point Q with IVQI l and d(P,Q)+l 5 , while A' VQ=IAp!*"VQI

since they have the same sign. I

The fuzzy generalization of Proposition 2.3 is false;

4Av=0 and v'_iv does not imply a(vv'_a(u,v). In Figure 5,

PQ is admissible for '), and g(P)=+- With respect to

however, the steps in value are all 1/n, except for t.he last
2

which is -; the only possible maximal values of g(P) are thusn
1/n ad2/n1/n and 2n- If n>2 and d+n-l<(d+l)n, these values ared~l d-fn-l
both smaller than that for v'. This counterexample would break

down if we used a different definition of g(P), such as
Ip P 7- 7 Q

d(P,Q)+l REPQ d(R,Q)+l d(Q,P)+l + RRP d P)+I)]; but

we will not pursue this alternative approach here.



2.3. Digital polygons

Subsets of digital pictures may be considered from

different points of view, e.g., as sets of grid points,

as sets of cells, or as digital polygons. For purposes of

defining quantitative adjacency in the digital (crisp)

case, it is convenient to deal with digital polygons.

In a digital simple polygon S = <P0 1 Pl1 ... ,Pn>, for

k = 0,1,...,n, the Pk are all grid points with integer

coordinates; points Pk and Pk+l are 8--neighbors (for

Pn+l P0 ); in relation to the interior of S the sequence

P , has clockwise orientation; and the border of

S is non-crossing, i.e., S is a simple polygon in the

usual sense. Because of the fixed orientation, finite

and infinite digital simple polygons can both be defined

in this way. For S = <P0 ,PI,.. . Pn> , the complementary

polygon S is given by <Pn'Pn-l''''P 0>
"

Because digital simple polygons are regions as defined

in Section 2.1, the degree of adjacency a(S,T) is defined

for digital polygons S and T. However, for the needs of

picture processing or computer graphics, a more specifically

digital approach will be used. For this purpose, the set

of border points BP(S) of a digital polygon S will be 
re-

stricted to grid points on the (real) border of S, i.e.,

BP(S)=PVPI ... ,PnI for S . , n >. Now, admis-

sible line segments are defined as in Section 2.1 for

PEBP(S) and Q BP(T), for the digital polygons S and T. (At



a vertex of a digital polygon, the (signed) normal is defined

to be the bisector of the vertex angle.). Let AL(S,T) be the

set of all admissible line segments, from border points of S

to border points of T. Note that AL(S,T)#AL(T,S) for almost

all digital polygons S and T; AL(S,S)=BP(S), and AL(S,S)=o

(the empty set). For digital polygons S and T, the digital

degree of adjacency is defined to be

Z I/(l+d p ), if AL(S,T)#0
PEBP(S)

adig (S,T)

0 otherwise.

Note that all the properties given in Section 2.1 for function

a are true for adig too. The property a(S,T)<p(S), the peri-

meter of S, is replaced by adig (S,T) -card BP(S), which may be

considered to be the digital perimeter of S.

Proposition 2.7. For digital polygons S,T, adig(S,T)=card BP(S)

if and only if T=S.

Proof: Because of AL(S,S)=BP(S) we have dp=0 for all PEBP(S).

Thus, adig (S,S)=card BP(S). On the other hand, if T3S then

there exists at least one point P(BP(S) with dp>0.

The normalized degree of adjacency is defined by
a* (S,T) = ad(S,T)/card BP(S),

dig adigsT/cr

for digital polygons S and T. The behavior of this concept of

degree of adjacency is illustrated by the following two examples.



Example 2.1. Assume two convex digital polygons S and Tn

with distance n between them, as shown in Figure 6. For

different values of n, polygon Tn changes its position in

relation to S. For example, for n=O,Sisin centralized posi-

tion within To, and for n=7 and n= -7, S and Tn are in touch-

ing positions. By symmetry, for n=0,1,2,... we have

a dig(S,T n)=a dig(S,T_n ) and a dig(TS)=adig (T_n ,S). For

the normalized degrees of adjacency we use card BP(S)=16 and

card BP(Tn)= 2 4 . For n=0,1,2,...,10, the values of a* (S,T
n dig n

and a* (T ,S) are given in Table 1. These values are gra-dig n

phically illustrated in Figure 7. As seen in this Figure,

there is a somewhat unbalanced behavior of the proposed mea-

sure a*. for intersecting positions (-6-n-6) and non-inter-dig

secting positions (Inl>8) of the two polygons. Even for

the "most adjacent" positions (n=7) we don't have the maximum

value, which is realized for Ini=2. This behavior is due to

the influence of border points for which P=Q, PEBP(S) and

QEBP(Tn). We may change our definition of a*, by requiring
n dig

dp=O if and only if there are border segments PP' and QQ'

of S and Tn , respectively, such that P$P' (non-trivial seg-

ment), PP'=QQ', and the signed normals of S and Tn on this

common border segment point in exactly inverse directions. In

all other cases of P=Q, PEBP(S) and QEBP(Tn ), we let d,=-.
+

The resulting modified function a*. is denoted by a Re-
dig dig

sults for adig are also shown in Table 1 for -10-n-10.

dig



Remark. Convex digital polygons are restricted to be oc-

tagons at most, where "convexity" is understood as in the

real plane. Then, for two convex digital polygons S and

T with N=card BP(S) + card BP(T), there exists an O(N)

worst case time algorithm for computing adig(ST) or

a* (S,T). The basic ideas of the algorithm are as follows:
dig

(i) Determine the upper and lower tangents on SUT dividing

the polygonal border of S (or T) into a connected part,

where no admissible line segments to T (or to S) are possi-

ble, and a second connected part containing all points which

may contribute to a dig(S,T) (or to a dig(T,S)).

(ii) Perform two search procedures, one top-down and one

bottom-up, to compute candidate values for dp, for all

points P in the interesting part of the border of S, where

only points in the interesting part of the border of T

have to be considered. In both search procedures the connec-

tion line between two points PEBP(S) and QEBP(T) which are

under consideration for computing dp moves monotonically down

(or up) in the interesting parts of the borders of S and T.

During these search procedures at most two crossings of

the borders of S and T are possible.

(iii) For all points P in the interesting part of the border

of S take the minimum of both candidate values found in (ii)

to compute dp.

(iv) Determine adig (S,T) by using the values of dp.

Using small examples, it can already ben seen that in

fact two search procedures are necessary in step (ii) which

cooperate to give the final result in step (iv).



Example 2.2. In this example, we consider a moving point

in relation to a fixed digital polygon T; see Proposition

2.4. P denotes the point at distance n from T as illus-n

trated in Figure 8. In this case, it follows that adig

(PnT)=l/(n+l) for n O, and adig(T,P0)=l, adig(T,P 1 )=l. 9 4 6 4 6 ,

adig (T,P2)=.47377, a dig(T,P3)=l.99526, etc.



3. Quantitative surroundedness

In Sections 3.1 and 3.2 we present two quantitative

definitions of surroundedness in the Euclidean plane,

and also indicate how each of them generalizes to the fuzzy

case. Section 3.3 discusses quantitative surroundedness

in digital pictures.

3.1. Visual surroundedness

Let P be a point and T a (bounded) set. Let re (P,T)=l if

the ray emanating from P ii, direction 8 meets T, and r0 (P,T)=O

otherwise. We define the degree of visual surroundedness of P

12 r (P,T)d6. (This integral might not be
by~ 7 svP T f026

defined if T is scme typeof pathological set; but it is evidently

defined for various types of well-behaved sets, such as regions

and arcs.)

If S is a (well-behaved) set, we define v(S,T) as

min v(P,T). (Another possibility would be to take thePES
"average" value of v(P,T) for all PES.) It follows that

v(S,T) is defined by a border point of S, i.e., v(S,T) =

min v(P,T). For the sets given in Figure 9, we have
PEaS

v(S,T)=v(P,T)=tan (5/6)/=0.2211 and v(T,S)=v(Q,S)=tan

(1/2)/7=0.1476.

If S and T are fuzzy sets, call them and v, we define

r (P,u,v)=l if v(R)_-.(P) at some point R on the ray emanating

from P in direction 6. (Recall [2] that v surrounds L if,

for any point P and any path 7 from P to B, there exists Rr--

I



such that v(R)>i(P).) We then define v(P,p,v) as 1

f2 re (P,p,v)de, and we define v(p,v) by taking the min over
0
all P in the plane. (In the case of taking the "average"

judP
value of v(P,,v) the denominator for the average is B ")

Evidently this generalizes the crisp definition.

Proposition 3.1. If T-_T', then v(P,T)>_v(P,T') for any P

and v(S,T) v(S,T') for any S.

Proof: This follows immediately from the fact that r (P,T)>-

r (P,T') for any P. Analogously, in the fuzzy case, if va .',

then v(P,w,v)>v(P,i,v') for any P and o. fl

It is not hard to see that v(P,T) is a continuous function of

the position of P. On the other hand, v(P,T) need not increase

as P moves closer to T, even if T is convex, as illustrated in

Figure 10.

If T subtends angle a from P, we evidently have v(P,T)=

a/27; thus as P approaches T, if T is convex v(P,T) approaches

1/2 since a approaches 7. Note that when PET we have %(P,T)=l.



3.2. Topological surroundedness

Even if v(P,T)=l, T may not surround P in the usual sense,

since there may be a curved path from P to B (the "background"

region, outside the picture) that does not intersect T, as illus-

trated in Figure 11. In this section we introduce an alternative

definition of quantitative surroundedness that is more closely

related to the usual (topological) definition.

Intuitively, the degree to which T (topologically) surrounds

P is related to how much a path from P must change direction in

order to reach B without intersecting T. For example, if T is

a spiral, and P is "surrounded" by a very large number of turns

of T, a path from P that does not intersect T must turn through

a very large multiple of 27 before it can reach B.

Let 7- be any rectifiable path from P' to B, starting

at P' in direction 0, that does not intersect T. (If no such

path exists, we define t(P',T)=-.) Let C T (P',T)=f 9

Ic 7(P)IdP, where c r(P) denotes the absolute curvature of

7 , at an arbitrary point P on 7 . Let C0 (P',T)=inf C (P',T);
T

if T is a "well behaved" set (e.g., a region) and P'AT and P'

is not inside a hole of T, C(P' ,T) will be finite. Finally,
2Tr

let t(P',T)= - f0 C (P',T)dg, the average of C (P',T) over
in f

[Alternatively, we could have used e C@ (P' ,T) , but using

the average allows our definition to be sensitive to "partial"

surroundedness of P'by T. For example, if T is a circle with a

small gap, and P is at its center, there exists a direction in

which 7, does not have to turn at all, so that the inf definition

gives 0, as if T were not there at all. On the other iiand, The

averaging definition reflects the fact that some :iaths may have



to turn by as much as 7 before they can get out of T; in fact,

the average is approximately 2, but it gets smaller as the gap

in the circle gets wider.]

If S is a ("well behaved") set, we define t(S,T) as

the inf of t(P,T) for all PEaS. If S and T are fuzzy (call

them L and v), we use exactly analogous definitions, except

that T1 is a path from P to B such that v(R)<p.(P) for all R on

.T this is the fuzzy version of "does not intersect T". In

the fuzzy case, t(viv) would be Jft(P,p,v)dxdY if we use the' idxdy

averaging definition.

Proposition 3.2. If TT', then t(P,T)_t(P,T') for any P,

and t(S,T)>_t(S,T ' ) for any S.

Proof: This follows immediately from the fact that any path

(from any P) that meets T' also meets T. Analogously, in

the fuzzy case, if v>_v', then t( ,v)_t(1,v' for any . l

It is not hard to see that t(P,T) is a continuous function of

the position of P. However, t(P,T) need not increase as P moves

closer to T, even if T is convex, as we see from the examples in

Figure 10.

Let T be convex and subtend angle i at P. It is easily

seen that for all , outside that angular sector, paths from P

to B exist that do not turn at all and do not meet T; but if

is inside the sector, say 3 away from Lhe nearer boundary of

the sector, a path from P in direction e must turn by at least

in order to reach B without meeting T. Moreover, such paths

exist that do not turn by more than E. It follows that t(P,T)



is just the average value of S for all directions 6 in the

secter; this is evidently just a/2. In particular, as P ap-

proaches T, t(P,T) approaches 7/2, since a approaches 7. Note

that when PET we have t(P,T)= -.

S
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3.3. Surroundedness for digital polygons

For subsets of digital pictures our approaches to quan-

titative surroundedness have to be "digitized."

In the case of visual surroundedness we define vdig(ST)=

min vdig(PT) for digital polygons S and T, where vdig (P,T)=
PEBP (S)
v(P,T)=a/27 if T subtends angle a from P. The rectangles S

and T in Figure 9 may be considered to be digital polygons,

for example. Then, the values of v dig(S,T) and v dig(T,S) re-

main the same as given in Section 3.1 by v(S,T) and v(T,S),

respectively. The straightforward approach to computing

v dig(ST) would be:

angle = +c,

compute the convex hulls S' ,T of S,T using any

desired linear time algorithm

for all points P in BP(S') do

i. compute the two tangents from P to T' and

the angle '-t between these tangents,

2. if angle >a then angle = A od

return angle/27.

Since when P moves around S' the related tangential points

Q1 ,Q2 BP(T') move around T' monotonically, this straightforward

algorithm leads to an O(N) time algorithm, N=card BP(S) +

card BP(T), by using two points to the actual tangential points

in BP(T').

In the case of topolcgical surroundedness, besides the

restriction of OS to BP(S) we have to digitize the set of

possible directions - for paths from BP(S) to the background B,

for a digital polygon S. Let us assume that is restricted



to the set a. gm={n-- : n=0,1,2,... ,m-l}, for m>l. Thenm

C,(P,T) denotes the minimal angle that a path TT in direc-

tion e starting at P may take around T to B, as defined

in Section 3.2, and tm (P,T) is defined by - z C (PT),
dig m -by

6 -.ang m

for a digital polygon T and a point P. Finally, we have

tmi(S,T) = min m (P,T). Obviously, the computational
dig PEBP(S) dig

requirements for computing tm ig (S,T) exceed those for com-

puting the visual surroundedness measure v (S,T), but
dig

still tm seems to be a practically useful function. For
dig

example, in the situation of Figure 9 we have t8 (P,T)

1l(tan- (5/6)+0+0+0+0+0+0+0)=0.0276-n=0.0868. It follows

that t (ST)< t 8  (PT)=0.0868. Analogously, t8 g (T,S) _<

t 8 g(Q,S)=0.0l84-T=0.0579. For computing tm ig(ST)

nearly the same algorithm may be used as for computing

Vdig(ST), but with some extensions. After computing the two

tangents from P to T' we determine a=t di(P,T') by using the
dig

minimal angular differences ro these tangents if -. is between

these tangents; otherwise C(PT')=O. Thus, tm (ST) with9 " ' digS')wt

N=card BP(S)+card BP(T) may be computed within O(mN) time in

the worst case sense.

-- i i i i ,.. ..S . . . . . . . . . . . . . . i i i i i



4. Concluding remarks

We have given definitions for quantitative adjacency and

surroundedness for crisp and fuzzy sets in the real plane, and

also for crisp digital polygons; we have not considered the

diigital fuzzy case. We have briefly described some algori-

thmns for computing these quantities in the digital case, but

many issues have been left open; for example, fast algorithms

for the adjacency measure in the general case (arbitrary

polygons) are still an open problem.

The proposed measures should be of interest in the

0 study of stochastic geometry in the real plane. At the same

time, these measures can be used to characterize relation-

ships between objects in a segmented digital picture, or to

compare objects in two different pictures.
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(a) (b) (c)

Figure 1. Examples of near-adjacency (a,b) and non-
adjacency (c).
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(a) (b)

Figure 2. The line-of-sight requirement in measuring
adjacency.

T

(a) (b)

Figure 3. Degree of adjacency is not symmetric.
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Figure 4. The degree of adjacency of a region T to a
point P is not necessarily a monotonically
decreasing function of d(P,T), and is not
necessarily a continuous function of the
position of P.
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Figure 5. Counterexample to the fuzzy generalization
• of Proposition 3.
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Figure 6. Two convex digital polygons n units apart (measured
between the two center points).
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Figure 7. Functions aig (S,T n ) and a* (T ,S) for the polygon
dg n dig n

in Figure 6, for -10-n-+10.
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Figure 8. Point Pn at distance n from polygon T as used
in Example 2.2.
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Figure 9. Example sets for illustrating surroundedness.
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(a) (b)

Figure 10. P' is closer to T than P, but v(P,T)>v(P',T).
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SFigure 11. Visual surroundedness does not imply surroundedness.

S 4



FILMED

8-84


